Advertisements
Advertisements
प्रश्न
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.
उत्तर
x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108
⇒ x = log 108 - log 4 - 2 log 5 - 3 log 3 - 2 log 2
= log (22 . 33) - log 22 - log 52 - log 33 - log 22
= `"log"((2^2. 3^3)/(2^2 . 5^2 . 3^3. 2^2))`
= `"log"(1/100)`
⇒ x
= log 1 - log 100
= 0 - 2
= -2
∴ x = -2.
APPEARS IN
संबंधित प्रश्न
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
Show that : loga m ÷ logab m + 1 + log ab
Evaluate : log38 ÷ log916
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Solve the following:
log (3 - x) - log (x - 3) = 1
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
Solve for x: `("log"27)/("log"243)` = x
Solve for x: `("log"81)/("log"9)` = x
If log x = a and log y = b, write down
10a-1 in terms of x
Express the following in a form free from logarithm:
3 log x - 2 log y = 2