Advertisements
Advertisements
प्रश्न
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.
उत्तर
x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108
⇒ x = log 108 - log 4 - 2 log 5 - 3 log 3 - 2 log 2
= log (22 . 33) - log 22 - log 52 - log 33 - log 22
= `"log"((2^2. 3^3)/(2^2 . 5^2 . 3^3. 2^2))`
= `"log"(1/100)`
⇒ x
= log 1 - log 100
= 0 - 2
= -2
∴ x = -2.
APPEARS IN
संबंधित प्रश्न
Solve for x and y ; if x > 0 and y > 0 ; log xy = log `x/y` + 2 log 2 = 2.
Show that : loga m ÷ logab m + 1 + log ab
If log2(x + y) = log3(x - y) = `log 25/log 0.2`, find the values of x and y.
Solve for x: `("log"289)/("log"17)` = logx
State, true of false:
If `("log"49)/("log"7)` = log y, then y = 100.
If `"log" x^2 - "log"sqrt(y)` = 1, express y in terms of x. Hence find y when x = 2.
If 2 log x + 1 = log 360, find: x
Express the following in a form free from logarithm:
3 log x - 2 log y = 2
Prove that (log a)2 - (log b)2 = `"log"("a"/"b")."log"("ab")`
If a = log 20 b = log 25 and 2 log (p - 4) = 2a - b, find the value of 'p'.