Advertisements
Advertisements
प्रश्न
If a = log 20 b = log 25 and 2 log (p - 4) = 2a - b, find the value of 'p'.
उत्तर
a = log 20, b = log 25 and 2 log (p - 4) = 2a - b
⇒ 2 log (p - 4) = 2a - b
⇒ 2 log (p - 4) = 2log20 - log25
⇒ log (p - 4)2 = log202 - log25
⇒ log (p - 4)2 = `"log"(400/25)`
⇒ (p - 4)2 = `(400)/(25)`
⇒ p2 - 8p + 16 = 16
⇒ p2 - 8p = 0
⇒ p(p - 8) = 0
⇒ p = 0 or p = 8.
APPEARS IN
संबंधित प्रश्न
Evaluate :`1/( log_a bc + 1) + 1/(log_b ca + 1) + 1/ ( log_c ab + 1 )`
If m = log 20 and n = log 25, find the value of x, so that :
2 log (x - 4) = 2 m - n.
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Solve the following:
log (3 - x) - log (x - 3) = 1
Solve for x: `("log"27)/("log"243)` = x
Solve for x: `("log"1331)/("log"11)` = logx
If log 3 m = x and log 3 n = y, write down
32x-3 in terms of m
Prove that log (1 + 2 + 3) = log 1 + log 2 + log 3. Is it true for any three numbers x, y, z?
If a b + b log a - 1 = 0, then prove that ba.ab = 10
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1