Advertisements
Advertisements
प्रश्न
If a = log 20 b = log 25 and 2 log (p - 4) = 2a - b, find the value of 'p'.
उत्तर
a = log 20, b = log 25 and 2 log (p - 4) = 2a - b
⇒ 2 log (p - 4) = 2a - b
⇒ 2 log (p - 4) = 2log20 - log25
⇒ log (p - 4)2 = log202 - log25
⇒ log (p - 4)2 = `"log"(400/25)`
⇒ (p - 4)2 = `(400)/(25)`
⇒ p2 - 8p + 16 = 16
⇒ p2 - 8p = 0
⇒ p(p - 8) = 0
⇒ p = 0 or p = 8.
APPEARS IN
संबंधित प्रश्न
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
Given log10x = 2a and log10y = `b/2`. Write 102b + 1 in terms of y.
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Solve the following:
log 4 x + log 4 (x-6) = 2
Solve for x: log (x + 5) = 1
Solve for x: `("log"1331)/("log"11)` = logx
If a = `"log" 3/5, "b" = "log" 5/4 and "c" = 2 "log" sqrt(3/4`, prove that 5a+b-c = 1
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1
Prove that (log a)2 - (log b)2 = `"log"("a"/"b")."log"("ab")`
Prove that log 10 125 = 3 (1 - log 10 2)