Advertisements
Advertisements
प्रश्न
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
उत्तर
Given that
x = 1 + log 2 - log 5,
y = 2 log 3 and
z = log a - log 5
Consider
x = 1 + log 2 - log 5
= log 10 + log 2 - log 5
= log( 10 x 2 ) - log 5
= log 20 - log 5
= log
= log 4 ....(1)
We have
y = 2 log3
= log 32
= log 9 ....(2)
Also we have
z = log a - log 5
= log
Given that x + y = 2z
∴ Subsitute the values of x, y, and z.
from (1), (2) and (3), We have
⇒ log 4 + log 9 = 2 log
⇒ log 4 + log 9 = log
⇒ log 4 + log 9 = log
⇒
⇒
⇒
⇒ a2 = 36 x 25
⇒ a2 = 900
⇒ a = 30.
APPEARS IN
संबंधित प्रश्न
Find x, if : logx (5x - 6) = 2
Given :
Given log10x = 2a and log10y =
Evaluate :
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
Solve the following:
log (x + 1) + log (x - 1) = log 48
Express log103 + 1 in terms of log10x.
If 2 log x + 1 = log 360, find: log (3 x2 - 8)
If log (a + 1) = log (4a - 3) - log 3; find a.
Prove that log 10 125 = 3 (1 - log 10 2)