Advertisements
Advertisements
प्रश्न
Find x, if : logx (5x - 6) = 2
उत्तर
logx (5x - 6) = 2
⇒ 5x - 6 = x2 ...[ Removing logarithm ]
⇒ x2 - 5x + 6 = 0
⇒ x2 - 3x - 2x + 6 = 0
⇒ x( x - 3 ) - 2( x - 3 ) = 0
⇒ ( x - 2 )( x - 3 ) = 0
∴ x = 2, 3.
APPEARS IN
संबंधित प्रश्न
If log√27x = 2 `(2)/(3)` , find x.
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
Solve : log5( x + 1 ) - 1 = 1 + log5( x - 1 ).
Solve the following:
`log_2x + log_4x + log_16x = (21)/(4)`
Solve for x: log (x + 5) = 1
If log x = a and log y = b, write down
10a-1 in terms of x
Express the following in a form free from logarithm:
m log x - n log y = 2 log 5
Prove that (log a)2 - (log b)2 = `"log"("a"/"b")."log"("ab")`
If a b + b log a - 1 = 0, then prove that ba.ab = 10
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1