Advertisements
Advertisements
प्रश्न
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1
उत्तर
L.H.S.
= `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)`
= `(1)/(("log"30)/("log"2)) + (1)/(("log"30)/("log"3)) + (1)/(("log"30)/("log"5))`
= `("log"2)/("log"30) + ("log"3)/("log"30) + ("log"5)/("log"30)`
= `(1)/("log"30)("log"2 + "log"3 + "log"5)`
= `(1)/("log"(2 xx 3 xx 5)) ("log"2 + "log"3 + "log"5)`
= `(("log"2 + "log"3 + "log"5))/(("log"2 + "log"3 + "log"5)`
= 1
= L.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find x, if : logx 625 = - 4
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Solve the following:
log 7 + log (3x - 2) = log (x + 3) + 1
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
Solve for x: `("log"27)/("log"243)` = x
Solve for x: `("log"121)/("log"11)` = logx
Solve for x: `("log"289)/("log"17)` = logx
Express the following in a form free from logarithm:
m log x - n log y = 2 log 5