Advertisements
Advertisements
प्रश्न
Prove that: `(1)/("log"_8 36) + (1)/("log"_9 36) + (1)/("log"_18 36)` = 2
उत्तर
L.H.S.
= `(1)/("log"_8 36) + (1)/("log"_9 36) + (1)/("log"_18 36)`
= log36 8 + log36 9 + log36 18
= `("log"8)/("log"36) + ("log"9)/("log"36) + ("log"18)/("log"36)`
= `(1)/("log"36)("log" 8 + "log"9 + "log"18)`
= `(1)/("log"36)("log"2^3 + "log"3^2 + "log"(2 xx 3^2))`
= `(1)/("log"(2^2 xx 3^2))("log"2^3 + "log"3^2 + "log"2 + "log"3^2)`
= `(1)/("log"(2^2 xx 3^2))(3"log"2 + 2"log"3 + "log"2 + "log"3)`
= `(1)/(2"log"2 + 2"log"3)(4"log"2 + 4"log"3)`
= `(4)/(2("log"2 + "log"3))("log"2 + "log"3)`
= 2
= R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
If log`( a - b )/2 = 1/2( log a + log b )`, Show that : a2 + b2 = 6ab.
If a2 + b2 = 23ab, show that:
log `(a + b)/5 = 1/2`(log a + log b).
Solve the following:
`log_2x + log_4x + log_16x = (21)/(4)`
Solve for x: `("log"81)/("log"9)` = x
If log 3 m = x and log 3 n = y, write down
32x-3 in terms of m
If log 3 m = x and log 3 n = y, write down
`3^(1-2y+3x)` in terms of m an n
If 2 log x + 1 = log 360, find: x
Prove that (log a)2 - (log b)2 = `"log"("a"/"b")."log"("ab")`
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1
If a = log 20 b = log 25 and 2 log (p - 4) = 2a - b, find the value of 'p'.