Advertisements
Advertisements
प्रश्न
Solve the following:
`log_2x + log_4x + log_16x = (21)/(4)`
उत्तर
`log_2x + log_4x + log_16x = (21)/(4)`
∴ `(1)/("log"_x2) + (1)/("log"_x2^2) + (1)/("log"_x2^4) = (21)/(4)`
∴ `(1)/("log"_x2) + (1)/("2log"_x2) + (1)/("4log"_x2) = (21)/(4)`
∴ `(1)/("log"_x2) (1 + 1/2 + 1/4) = (21)/(4)`
∴ `(1)/("log"_x2)(7/4) = (21)/(4)`
∴ `"log"_x2 = (7)/(4) . (4)/(21)`
∴ `"log"_x2 = (1)/(3)`
∴ `x^(1/3)` = 2
∴ x = 23
= 8.
APPEARS IN
संबंधित प्रश्न
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
If log`( a - b )/2 = 1/2( log a + log b )`, Show that : a2 + b2 = 6ab.
Find x, if : logx 625 = - 4
Find x, if : logx (5x - 6) = 2
Given : `log x/ log y = 3/2` and log (xy) = 5; find the value of x and y.
Evaluate : log38 ÷ log916
If log 3 m = x and log 3 n = y, write down
`3^(1-2y+3x)` in terms of m an n
If a = `"log" 3/5, "b" = "log" 5/4 and "c" = 2 "log" sqrt(3/4`, prove that 5a+b-c = 1
Express the following in a form free from logarithm:
2 log x + 3 log y = log a
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1