Advertisements
Advertisements
प्रश्न
Solve the following:
`log_2x + log_4x + log_16x = (21)/(4)`
उत्तर
`log_2x + log_4x + log_16x = (21)/(4)`
∴ `(1)/("log"_x2) + (1)/("log"_x2^2) + (1)/("log"_x2^4) = (21)/(4)`
∴ `(1)/("log"_x2) + (1)/("2log"_x2) + (1)/("4log"_x2) = (21)/(4)`
∴ `(1)/("log"_x2) (1 + 1/2 + 1/4) = (21)/(4)`
∴ `(1)/("log"_x2)(7/4) = (21)/(4)`
∴ `"log"_x2 = (7)/(4) . (4)/(21)`
∴ `"log"_x2 = (1)/(3)`
∴ `x^(1/3)` = 2
∴ x = 23
= 8.
APPEARS IN
संबंधित प्रश्न
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
Show that : loga m ÷ logab m + 1 + log ab
If log2(x + y) = log3(x - y) = `log 25/log 0.2`, find the values of x and y.
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Solve the following:
log(x2 + 36) - 2log x = 1
Solve for x: log (x + 5) = 1
Express log103 + 1 in terms of log10x.
If log 3 m = x and log 3 n = y, write down
32x-3 in terms of m
If `"log" x^2 - "log"sqrt(y)` = 1, express y in terms of x. Hence find y when x = 2.
Express the following in a form free from logarithm:
5 log m - 1 = 3 log n