Advertisements
Advertisements
प्रश्न
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
उत्तर
Given that
a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z
Consider the equation,
3a2 - 2b3 = 6log z
⇒ 3log x - 2log y = 6log z
⇒ logx3 - logy2 = logz6
⇒ log `(x^3/y^2)` = logz6
⇒ `x^3/y^2 = z^6`
⇒ `x^3/z^6 = y^2`
⇒ `y^2 = x^3/z^6`
⇒ y = `( x^3/z^6 )^(1/2)`
⇒ y = `( x^(3/2)/z^(6/2))`
⇒ y = `x^(3/2)/z^3`
APPEARS IN
संबंधित प्रश्न
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z
(ii) 5x + y - z
If log2(x + y) = log3(x - y) = `log 25/log 0.2`, find the values of x and y.
Solve : log5( x + 1 ) - 1 = 1 + log5( x - 1 ).
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
Solve for x: `("log"1331)/("log"11)` = logx
If 2 log x + 1 = log 360, find: log (3 x2 - 8)
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1
Prove that log (1 + 2 + 3) = log 1 + log 2 + log 3. Is it true for any three numbers x, y, z?
If a b + b log a - 1 = 0, then prove that ba.ab = 10
If a = log 20 b = log 25 and 2 log (p - 4) = 2a - b, find the value of 'p'.