Advertisements
Advertisements
प्रश्न
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z
(ii) 5x + y - z
उत्तर
Given that
x = log 0.6 , y = log 1.25, z = log 3 - 2log 2
Consider
z = log 3 - 2log 2
= log 3 - log 22
= log 3 - log 4
= log`3/4`
= log 0.75 ....(1)
(i) x + y - z = log 0.6 + log 1.25 - log 0.75
= log`[ 0.6 xx 1.25 ]/0.75`
= log`[0.75/0.75]`
= log 1
= 0 ...(2)
(ii) 5x + y - z = 50 ...[ ∵ x + y - z = 0 from (2) ]
= 1
APPEARS IN
संबंधित प्रश्न
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Solve the following:
log 7 + log (3x - 2) = log (x + 3) + 1
Solve for x: `("log"121)/("log"11)` = logx
Solve for x: `("log"125)/("log"5)` = logx
Solve for x: `("log"128)/("log"32)` = x
State, true of false:
logba =-logab
If 2 log x + 1 = log 360, find: x
If 2 log x + 1 = log 360, find: log (3 x2 - 8)
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.
Express the following in a form free from logarithm:
2 log x + 3 log y = log a