Advertisements
Advertisements
प्रश्न
Solve for x: `("log"128)/("log"32)` = x
उत्तर
`("log"128)/("log"32)` = x
⇒ `("log"2^7)/("log"2^5)` = x
⇒ `(7"log"2)/(5"log"2)` = x
⇒ x = `(7)/(5)`
= 1.4.
APPEARS IN
संबंधित प्रश्न
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
Solve : log5( x + 1 ) - 1 = 1 + log5( x - 1 ).
If a2 = log x , b3 = log y and `a^2/2 - b^3/3` = log c , find c in terms of x and y.
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Solve the following:
log(x2 + 36) - 2log x = 1
Solve the following:
`log_2x + log_4x + log_16x = (21)/(4)`
Solve for x: `("log"121)/("log"11)` = logx
If log x = a and log y = b, write down
102b in terms of y
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.
If a b + b log a - 1 = 0, then prove that ba.ab = 10