Advertisements
Advertisements
Question
Solve for x: `("log"128)/("log"32)` = x
Solution
`("log"128)/("log"32)` = x
⇒ `("log"2^7)/("log"2^5)` = x
⇒ `(7"log"2)/(5"log"2)` = x
⇒ x = `(7)/(5)`
= 1.4.
APPEARS IN
RELATED QUESTIONS
Show that : loga m ÷ logab m + 1 + log ab
Given log10x = 2a and log10y = `b/2`. Write 10a in terms of x.
If a2 = log x , b3 = log y and `a^2/2 - b^3/3` = log c , find c in terms of x and y.
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Solve for x: `("log"121)/("log"11)` = logx
Solve for x: `("log"1331)/("log"11)` = logx
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
Express the following in a form free from logarithm:
5 log m - 1 = 3 log n
If log (a + 1) = log (4a - 3) - log 3; find a.