Advertisements
Advertisements
Question
If a2 = log x , b3 = log y and `a^2/2 - b^3/3` = log c , find c in terms of x and y.
Solution
Given a2 = log x , b3 = log y
Now `a^2/2 - b^3/3` = log c
⇒ `log x/2 - log y/3 = log c`
⇒ `[ 3log x - 2log y]/6 = log c`
⇒ 3log x - 2log y = 6log c
⇒ log x3 - logy2 = 6log c
⇒ `log(x^3/y^2) = logc^6`
⇒ `x^3/y^2 = c^6`
⇒ c = `root(6)( x^3/y^2 )`
APPEARS IN
RELATED QUESTIONS
If log√27x = 2 `(2)/(3)` , find x.
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Solve the following:
log(x2 + 36) - 2log x = 1
Solve the following:
log ( x + 1) + log ( x - 1) = log 11 + 2 log 3
Solve for x: `("log"1331)/("log"11)` = logx
Express log103 + 1 in terms of log10x.
If log x = a and log y = b, write down
102b in terms of y
Express the following in a form free from logarithm:
5 log m - 1 = 3 log n
Prove that: `(1)/("log"_8 36) + (1)/("log"_9 36) + (1)/("log"_18 36)` = 2