Advertisements
Advertisements
प्रश्न
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
उत्तर
Given that
p = log 20 and q = log 25
We also have
2 log( x + 1 ) = 2p - q
⇒ 2log( x + 1 ) = 2 log 20 - log 25
⇒ log( x + 1 )2 = log202 - log 25
⇒ log( x + 1 )2 = log 400 - log 25
⇒ log( x + 1 )2 = log`400/25`
⇒ log( x + 1 )2 = log 16
⇒ log( x + 1 )2 = log 42
⇒ x + 1 = 4
⇒ x = 4 - 1
⇒ x = 3.
APPEARS IN
संबंधित प्रश्न
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z
(ii) 5x + y - z
If a2 + b2 = 23ab, show that:
log `(a + b)/5 = 1/2`(log a + log b).
If m = log 20 and n = log 25, find the value of x, so that :
2 log (x - 4) = 2 m - n.
Find x, if : logx (5x - 6) = 2
Show that : loga m ÷ logab m + 1 + log ab
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Solve the following:
log (x + 1) + log (x - 1) = log 48
Solve for x: `("log"81)/("log"9)` = x
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1