Advertisements
Advertisements
प्रश्न
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
उत्तर
logx15√5 = 2 - logx3√5
⇒ logx15√5 + logx3√5 = 2
⇒ logx( 15√5 x 3√5 ) = 2
⇒ logx 225 = 2
⇒ logx 152 = 2
⇒ 2logx 15 = 2
⇒ logx15 = 1
⇒ x = 15.
APPEARS IN
संबंधित प्रश्न
Find x, if : logx (5x - 6) = 2
If log2(x + y) = log3(x - y) = `log 25/log 0.2`, find the values of x and y.
Evaluate : log38 ÷ log916
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Solve the following:
log (x + 1) + log (x - 1) = log 48
Solve for x: `("log"1331)/("log"11)` = logx
If 2 log x + 1 = log 360, find: log (3 x2 - 8)
Express the following in a form free from logarithm:
3 log x - 2 log y = 2
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1
Prove that log (1 + 2 + 3) = log 1 + log 2 + log 3. Is it true for any three numbers x, y, z?