Advertisements
Advertisements
Question
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Solution
logx15√5 = 2 - logx3√5
⇒ logx15√5 + logx3√5 = 2
⇒ logx( 15√5 x 3√5 ) = 2
⇒ logx 225 = 2
⇒ logx 152 = 2
⇒ 2logx 15 = 2
⇒ logx15 = 1
⇒ x = 15.
APPEARS IN
RELATED QUESTIONS
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
Solve for x and y ; if x > 0 and y > 0 ; log xy = log `x/y` + 2 log 2 = 2.
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
Solve for x: `("log"128)/("log"32)` = x
Solve for x: `("log"1331)/("log"11)` = logx
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1
If a b + b log a - 1 = 0, then prove that ba.ab = 10
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1
Prove that: `(1)/("log"_8 36) + (1)/("log"_9 36) + (1)/("log"_18 36)` = 2
If a = log 20 b = log 25 and 2 log (p - 4) = 2a - b, find the value of 'p'.