Advertisements
Advertisements
Question
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1
Solution
`2"log" x + 1/2"log" y` = 1
⇒ `"log" x^2 + "log sqrt(y)` = log 10
⇒ `"log"(x^2sqrt(y))` = log 10
⇒ `x^2 sqrt(y)` = 10.
APPEARS IN
RELATED QUESTIONS
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
Find x, if : logx (5x - 6) = 2
Given log10x = 2a and log10y = `b/2`. Write 102b + 1 in terms of y.
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Solve the following:
log 7 + log (3x - 2) = log (x + 3) + 1
Solve the following:
log 4 x + log 4 (x-6) = 2
If log x = a and log y = b, write down
10a-1 in terms of x
If 2 log x + 1 = log 360, find: log (3 x2 - 8)