Advertisements
Advertisements
Question
If 2 log x + 1 = log 360, find: log (3 x2 - 8)
Solution
log (3 x2 - 8)
2logx + 1 = log360
⇒ logx2 + log10 = log360
⇒ log(10x2) = log360
⇒ 10x2 = 360
⇒ x2 = `(360)/(10)` = 36
⇒ x = `sqrt(36)` = ±6
As negative value is rejected,
∴ x = 6
∴ log (3 x2 - 8)
= log{3(6)2 - 8}
= log(108 - 8)
= log100
= log102
= 2log10
= 2 x 1
= 2.
APPEARS IN
RELATED QUESTIONS
If `3/2 log a + 2/3` log b - 1 = 0, find the value of a9.b4 .
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
Solve for x and y ; if x > 0 and y > 0 ; log xy = log `x/y` + 2 log 2 = 2.
Solve for x, if : logx49 - logx7 + logx `1/343` + 2 = 0
Solve the following:
`log_2x + log_4x + log_16x = (21)/(4)`
Solve for x: `("log"81)/("log"9)` = x
Solve for x: `("log"125)/("log"5)` = logx
State, true of false:
logba =-logab
If log x = a and log y = b, write down
10a-1 in terms of x
Prove that `("log"_"p" x)/("log"_"pq" x)` = 1 + logp q