English

Solve for X and Y ; If X > 0 and Y > 0;Log Xy = Log X/Y + 2 Log 2 = 2. - Mathematics

Advertisements
Advertisements

Question

Solve for x and y ; if x > 0 and y > 0 ; log xy = log `x/y` + 2 log 2 = 2.

Sum

Solution

Log xy = log`( x/y )` + 2log2 = 2
log xy = 2
⇒ log xy = 2log10
⇒ log xy = log 102
⇒ log xy = log 100
∴ xy = 100                    ...(1) 
Now consider the equation
`log( x/y ) + 2log2 = 2`

⇒ `log( x/y ) + log2^2 = 2log 10`

⇒ `log( x/y ) + log 4 = log 10^2`

⇒ `log( x/y ) + log 4 = log 100`

⇒ `( x/y ) xx 4 = 100`

⇒  4x = 100y
⇒ x = 25y
⇒ xy = 25y x y
⇒ xy = 25y
⇒ 100 = 25y2        ...[ from(1) ]

⇒ y2 = `100/25`
⇒ y2 = 4
⇒ y = 2               ....[ ∵ y > 0 ]
From (1),
xy = 100
⇒ x x 2 = 100
⇒ x = `100/2`
⇒ x = 50.
Thus the values of x and y are x = 50 and y = 2.

shaalaa.com
More About Logarithm
  Is there an error in this question or solution?
Chapter 8: Logarithms - Exercise 8 (D) [Page 111]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 8 Logarithms
Exercise 8 (D) | Q 8 | Page 111
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×