Advertisements
Advertisements
Question
Solve for x and y ; if x > 0 and y > 0 ; log xy = log `x/y` + 2 log 2 = 2.
Solution
Log xy = log`( x/y )` + 2log2 = 2
log xy = 2
⇒ log xy = 2log10
⇒ log xy = log 102
⇒ log xy = log 100
∴ xy = 100 ...(1)
Now consider the equation
`log( x/y ) + 2log2 = 2`
⇒ `log( x/y ) + log2^2 = 2log 10`
⇒ `log( x/y ) + log 4 = log 10^2`
⇒ `log( x/y ) + log 4 = log 100`
⇒ `( x/y ) xx 4 = 100`
⇒ 4x = 100y
⇒ x = 25y
⇒ xy = 25y x y
⇒ xy = 25y2
⇒ 100 = 25y2 ...[ from(1) ]
⇒ y2 = `100/25`
⇒ y2 = 4
⇒ y = 2 ....[ ∵ y > 0 ]
From (1),
xy = 100
⇒ x x 2 = 100
⇒ x = `100/2`
⇒ x = 50.
Thus the values of x and y are x = 50 and y = 2.
APPEARS IN
RELATED QUESTIONS
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
Solve the following:
log (3 - x) - log (x - 3) = 1
Solve the following:
log(x2 + 36) - 2log x = 1
Solve the following:
log 7 + log (3x - 2) = log (x + 3) + 1
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
Express log103 + 1 in terms of log10x.
If 2 log x + 1 = log 360, find: log(2 x -2)
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1