Advertisements
Advertisements
प्रश्न
Solve for x and y ; if x > 0 and y > 0 ; log xy = log `x/y` + 2 log 2 = 2.
उत्तर
Log xy = log`( x/y )` + 2log2 = 2
log xy = 2
⇒ log xy = 2log10
⇒ log xy = log 102
⇒ log xy = log 100
∴ xy = 100 ...(1)
Now consider the equation
`log( x/y ) + 2log2 = 2`
⇒ `log( x/y ) + log2^2 = 2log 10`
⇒ `log( x/y ) + log 4 = log 10^2`
⇒ `log( x/y ) + log 4 = log 100`
⇒ `( x/y ) xx 4 = 100`
⇒ 4x = 100y
⇒ x = 25y
⇒ xy = 25y x y
⇒ xy = 25y2
⇒ 100 = 25y2 ...[ from(1) ]
⇒ y2 = `100/25`
⇒ y2 = 4
⇒ y = 2 ....[ ∵ y > 0 ]
From (1),
xy = 100
⇒ x x 2 = 100
⇒ x = `100/2`
⇒ x = 50.
Thus the values of x and y are x = 50 and y = 2.
APPEARS IN
संबंधित प्रश्न
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
Evaluate : log38 ÷ log916
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Solve the following:
log (x + 1) + log (x - 1) = log 48
Solve the following:
`log_2x + log_4x + log_16x = (21)/(4)`
Solve for x: `("log"128)/("log"32)` = x
Solve for x: `("log"1331)/("log"11)` = logx
Solve for x: `("log"289)/("log"17)` = logx
Prove that `("log"_"p" x)/("log"_"pq" x)` = 1 + logp q