Advertisements
Advertisements
प्रश्न
Solve the following:
log (x + 1) + log (x - 1) = log 48
उत्तर
log (x + 1) + log (x - 1) = log 48
⇒ log {(x + 1)(x - 1)} = log 48
⇒ log (x2 - 1) = log 48
⇒ x2 - 1 = 48
⇒ x2 = 49
⇒ x = 7 ...(neglecting the negative value).
APPEARS IN
संबंधित प्रश्न
Solve for x and y ; if x > 0 and y > 0 ; log xy = log `x/y` + 2 log 2 = 2.
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
Evaluate: logb a × logc b × loga c.
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
Solve for x: `("log"81)/("log"9)` = x
If log 3 m = x and log 3 n = y, write down
`3^(1-2y+3x)` in terms of m an n
If `"log" x^2 - "log"sqrt(y)` = 1, express y in terms of x. Hence find y when x = 2.
If 2 log x + 1 = log 360, find: x
If log (a + 1) = log (4a - 3) - log 3; find a.
Prove that `("log"_"p" x)/("log"_"pq" x)` = 1 + logp q