Advertisements
Advertisements
प्रश्न
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
उत्तर
log 8 (x2 - 1) - log 8 (3x + 9) = 0
⇒ `"log"_8((x^2 - 1)/(3x + 9))` = log 8 1
⇒ `(x^2 - 1)/(3x + 9)` = 1
⇒ x2 - 1 = 3x + 9
⇒ x2 - 3x - 10 = 0
⇒ x2 - 5x + 2x - 10 = 0
⇒ x (x - 5) + 2(x - 5) = 0
⇒ (x - 5)(x + 2) = 0
⇒ x = 5 or x = -2.
APPEARS IN
संबंधित प्रश्न
If log2(x + y) = log3(x - y) = `log 25/log 0.2`, find the values of x and y.
Given log10x = 2a and log10y = `b/2`. Write 102b + 1 in terms of y.
Given log10x = 2a and log10y = `b/2. "If" log_10^p = 3a - 2b`, express P in terms of x and y.
Evaluate: `(log_5 8)/(log_25 16 xx Log_100 10)`
Express log103 + 1 in terms of log10x.
If log x = a and log y = b, write down
10a-1 in terms of x
If 2 log x + 1 = log 360, find: log(2 x -2)
If a = `"log" 3/5, "b" = "log" 5/4 and "c" = 2 "log" sqrt(3/4`, prove that 5a+b-c = 1
Express the following in a form free from logarithm:
3 log x - 2 log y = 2
Prove that (log a)2 - (log b)2 = `"log"("a"/"b")."log"("ab")`