Advertisements
Advertisements
प्रश्न
Given log10x = 2a and log10y = `b/2. "If" log_10^p = 3a - 2b`, express P in terms of x and y.
उत्तर
We know 10a = x1/2
10b/2 = y
⇒ 10b = y2
`log_10^p` = 3a - 2b
⇒ p = 103a - 2b
⇒ p = (103)a ÷ (102)b
⇒ p = ( 10a )3 ÷ ( 10b )2
Substituting 10a & 10b, We get
⇒ p = ( x1/2 )3 ÷ ( y2 )2
⇒ p = `x^(3/2) ÷ y^4`
⇒ p = `x^(3/2)/y^4`
APPEARS IN
संबंधित प्रश्न
If a2 = log x , b3 = log y and `a^2/2 - b^3/3` = log c , find c in terms of x and y.
Solve the following:
log 7 + log (3x - 2) = log (x + 3) + 1
Solve for x: log (x + 5) = 1
Solve for x: `("log"125)/("log"5)` = logx
Solve for x: `("log"1331)/("log"11)` = logx
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
If 2 log x + 1 = log 360, find: x
If 2 log x + 1 = log 360, find: log(2 x -2)
Express the following in a form free from logarithm:
m log x - n log y = 2 log 5
If a b + b log a - 1 = 0, then prove that ba.ab = 10