Advertisements
Advertisements
प्रश्न
Given log10x = 2a and log10y = `b/2. "If" log_10^p = 3a - 2b`, express P in terms of x and y.
उत्तर
We know 10a = x1/2
10b/2 = y
⇒ 10b = y2
`log_10^p` = 3a - 2b
⇒ p = 103a - 2b
⇒ p = (103)a ÷ (102)b
⇒ p = ( 10a )3 ÷ ( 10b )2
Substituting 10a & 10b, We get
⇒ p = ( x1/2 )3 ÷ ( y2 )2
⇒ p = `x^(3/2) ÷ y^4`
⇒ p = `x^(3/2)/y^4`
APPEARS IN
संबंधित प्रश्न
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
Solve the following:
log ( x + 1) + log ( x - 1) = log 11 + 2 log 3
Solve for x: `("log"81)/("log"9)` = x
Solve for x: `("log"1331)/("log"11)` = logx
Solve for x: `("log"289)/("log"17)` = logx
If 2 log x + 1 = log 360, find: log (3 x2 - 8)
Express the following in a form free from logarithm:
m log x - n log y = 2 log 5
If log (a + 1) = log (4a - 3) - log 3; find a.
If a = log 20 b = log 25 and 2 log (p - 4) = 2a - b, find the value of 'p'.