Advertisements
Advertisements
प्रश्न
Given log10x = 2a and log10y = `b/2`. Write 102b + 1 in terms of y.
उत्तर
log10y = `b/2`
⇒ y = 10b/2
⇒ y4 = 102b
⇒ 10y4 = 102b x 10
⇒ 102b + 1 = 10y4
APPEARS IN
संबंधित प्रश्न
Evaluate :`1/( log_a bc + 1) + 1/(log_b ca + 1) + 1/ ( log_c ab + 1 )`
If log`( a - b )/2 = 1/2( log a + log b )`, Show that : a2 + b2 = 6ab.
Given : `log x/ log y = 3/2` and log (xy) = 5; find the value of x and y.
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Solve the following:
log 4 x + log 4 (x-6) = 2
Solve for x: `("log"125)/("log"5)` = logx
If `"log" x^2 - "log"sqrt(y)` = 1, express y in terms of x. Hence find y when x = 2.
Express the following in a form free from logarithm:
3 log x - 2 log y = 2
If log (a + 1) = log (4a - 3) - log 3; find a.