Advertisements
Advertisements
प्रश्न
Given log10x = 2a and log10y = `b/2`. Write 10a in terms of x.
उत्तर
log10x = 2a
⇒ x = 102a ...[ Removing logarithm from both sides ]
⇒ x1/2 = 10a
⇒ 10a = x1/2
APPEARS IN
संबंधित प्रश्न
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
If log√27x = 2 `(2)/(3)` , find x.
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
If log2(x + y) = log3(x - y) = `log 25/log 0.2`, find the values of x and y.
Solve the following:
log(x2 + 36) - 2log x = 1
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
Solve for x: `("log"121)/("log"11)` = logx
If a b + b log a - 1 = 0, then prove that ba.ab = 10
Prove that `("log"_"p" x)/("log"_"pq" x)` = 1 + logp q
Prove that: `(1)/("log"_8 36) + (1)/("log"_9 36) + (1)/("log"_18 36)` = 2