Advertisements
Advertisements
प्रश्न
If log√27x = 2 `(2)/(3)` , find x.
उत्तर
log√27x = 2 `(2)/ (3)`
∴ log√27x = `(8)/ (3)`
∴ x = `( sqrt27 )^((8)/ (3))` ...[ ∵ loga x = b ⇒ x = ab ]
∴ x = `( 27^((1)/(2)))^(8/3)`
∴ x = `( 3 ^((3)/(2)))^(8/3)`
∴ x = `3^((3/2)xx(8/3))`
∴ x = 34
∴ x = 81
APPEARS IN
संबंधित प्रश्न
If log`( a - b )/2 = 1/2( log a + log b )`, Show that : a2 + b2 = 6ab.
If a2 + b2 = 23ab, show that:
log `(a + b)/5 = 1/2`(log a + log b).
Show that : loga m ÷ logab m + 1 + log ab
Given log10x = 2a and log10y = `b/2. "If" log_10^p = 3a - 2b`, express P in terms of x and y.
Solve the following:
log (3 - x) - log (x - 3) = 1
Solve for x: `("log"81)/("log"9)` = x
State, true of false:
If `("log"49)/("log"7)` = log y, then y = 100.
If log 3 m = x and log 3 n = y, write down
32x-3 in terms of m
If a b + b log a - 1 = 0, then prove that ba.ab = 10
Prove that: `(1)/("log"_8 36) + (1)/("log"_9 36) + (1)/("log"_18 36)` = 2