Advertisements
Advertisements
प्रश्न
If a2 + b2 = 23ab, show that:
log `(a + b)/5 = 1/2`(log a + log b).
उत्तर
Given that
a2 + b2 = 23ab
⇒ a2 + b2 + 2ab = 23ab + 2ab
⇒ a2 + b2 + 2ab = 25ab
⇒ (a + b)2 = 25ab
Taking log on both side
⇒ log(a + b)2 = log25ab
⇒ 2log(a + b) = log25 + loga + logb
⇒ 2log(a + b) - log52 = loga + logb
⇒ 2log(a + b) - 2log5 = loga + logb
⇒ 2[log(a + b) - log5] = loga + logb
⇒ `log((a+b)/5)=1/2[loga+logb]`
Hence proved.
APPEARS IN
संबंधित प्रश्न
If `3/2 log a + 2/3` log b - 1 = 0, find the value of a9.b4 .
If log`( a - b )/2 = 1/2( log a + log b )`, Show that : a2 + b2 = 6ab.
Find x, if : logx 625 = - 4
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
Solve the following:
log 4 x + log 4 (x-6) = 2
Solve the following:
log (x + 1) + log (x - 1) = log 48
State, true of false:
If `("log"49)/("log"7)` = log y, then y = 100.
If log x = a and log y = b, write down
102b in terms of y
If log (a + 1) = log (4a - 3) - log 3; find a.
Prove that log 10 125 = 3 (1 - log 10 2)