Advertisements
Advertisements
प्रश्न
State, true of false:
If `("log"49)/("log"7)` = log y, then y = 100.
पर्याय
True
False
उत्तर
True.
`("log"49)/("log"7)` = log y
⇒ `("log"7^2)/("log"7)` = log y
⇒ `(2"log"7)/("log"7)` = log y
⇒ 2(1) = log y
⇒ 2log10 10 = log y
⇒ log10 102 = log10 y
⇒ log10 100 = log10 y
⇒ y = 100.
APPEARS IN
संबंधित प्रश्न
If `3/2 log a + 2/3` log b - 1 = 0, find the value of a9.b4 .
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
If m = log 20 and n = log 25, find the value of x, so that :
2 log (x - 4) = 2 m - n.
Given log10x = 2a and log10y = `b/2`. Write 10a in terms of x.
Given log10x = 2a and log10y = `b/2`. Write 102b + 1 in terms of y.
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Solve for x: log (x + 5) = 1
If log 3 m = x and log 3 n = y, write down
32x-3 in terms of m
Express the following in a form free from logarithm:
m log x - n log y = 2 log 5
Prove that log (1 + 2 + 3) = log 1 + log 2 + log 3. Is it true for any three numbers x, y, z?