Advertisements
Advertisements
Question
Given log10x = 2a and log10y = `b/2. "If" log_10^p = 3a - 2b`, express P in terms of x and y.
Solution
We know 10a = x1/2
10b/2 = y
⇒ 10b = y2
`log_10^p` = 3a - 2b
⇒ p = 103a - 2b
⇒ p = (103)a ÷ (102)b
⇒ p = ( 10a )3 ÷ ( 10b )2
Substituting 10a & 10b, We get
⇒ p = ( x1/2 )3 ÷ ( y2 )2
⇒ p = `x^(3/2) ÷ y^4`
⇒ p = `x^(3/2)/y^4`
APPEARS IN
RELATED QUESTIONS
If `3/2 log a + 2/3` log b - 1 = 0, find the value of a9.b4 .
If log√27x = 2 `(2)/(3)` , find x.
If a2 = log x , b3 = log y and `a^2/2 - b^3/3` = log c , find c in terms of x and y.
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
Solve the following:
log (3 - x) - log (x - 3) = 1
Solve the following:
log (x + 1) + log (x - 1) = log 48
Solve for x: `("log"128)/("log"32)` = x
If log 3 m = x and log 3 n = y, write down
32x-3 in terms of m
If `"log" x^2 - "log"sqrt(y)` = 1, express y in terms of x. Hence find y when x = 2.
Express the following in a form free from logarithm:
2 log x + 3 log y = log a