Advertisements
Advertisements
प्रश्न
If 2 log x + 1 = log 360, find: log (3 x2 - 8)
उत्तर
log (3 x2 - 8)
2logx + 1 = log360
⇒ logx2 + log10 = log360
⇒ log(10x2) = log360
⇒ 10x2 = 360
⇒ x2 = `(360)/(10)` = 36
⇒ x = `sqrt(36)` = ±6
As negative value is rejected,
∴ x = 6
∴ log (3 x2 - 8)
= log{3(6)2 - 8}
= log(108 - 8)
= log100
= log102
= 2log10
= 2 x 1
= 2.
APPEARS IN
संबंधित प्रश्न
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
If log`( a - b )/2 = 1/2( log a + log b )`, Show that : a2 + b2 = 6ab.
Solve for x and y ; if x > 0 and y > 0 ; log xy = log `x/y` + 2 log 2 = 2.
Find x, if : logx (5x - 6) = 2
Solve for x, if : logx49 - logx7 + logx `1/343` + 2 = 0
Solve for x: log (x + 5) = 1
Solve for x: `("log"289)/("log"17)` = logx
If 2 log x + 1 = log 360, find: x
Express the following in a form free from logarithm:
m log x - n log y = 2 log 5
Prove that (log a)2 - (log b)2 = `"log"("a"/"b")."log"("ab")`