Advertisements
Advertisements
प्रश्न
If 2 log x + 1 = log 360, find: log(2 x -2)
उत्तर
log(2 x -2)
2logx + 1 = log360
⇒ logx2 + log10 = log360
⇒ log(10x2) = log360
⇒ 10x2 = 360
⇒ x2 = `(360)/(10)` = 36
⇒ x = `sqrt(36)` = ±6
As negative value is rejected,
∴ x = 6
∴ log (2x - 2)
= log(2.6 - 2)
= log 10
= 1.
APPEARS IN
संबंधित प्रश्न
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
Evaluate : log38 ÷ log916
Given x = log1012 , y = log4 2 x log109 and z = log100.4 , find :
(i) x - y - z
(ii) 13x - y - z
Solve the following:
log(x2 + 36) - 2log x = 1
Solve for x: `("log"81)/("log"9)` = x
If 2 log x + 1 = log 360, find: log (3 x2 - 8)
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1
If a b + b log a - 1 = 0, then prove that ba.ab = 10
If log (a + 1) = log (4a - 3) - log 3; find a.