Advertisements
Advertisements
प्रश्न
Solve for x, if : logx49 - logx7 + logx `1/343` + 2 = 0
उत्तर
logx49 - logx7 + logx `1/343` = - 2
⇒ logx`49/[7 xx 343]` = - 2
⇒ logx`1/49` = - 2
⇒ - logx 49 = - 2
⇒ logx49 = 2
⇒ 49 = x2 ...[Removing logarithm]
∴ x = 7.
APPEARS IN
संबंधित प्रश्न
Find x, if : logx 625 = - 4
Find x, if : logx (5x - 6) = 2
Evaluate : `( log _5^8 )/(( log_25 16 ) xx ( log_100 10))`
Solve for x: log (x + 5) = 1
Solve for x: `("log"1331)/("log"11)` = logx
If `"log" x^2 - "log"sqrt(y)` = 1, express y in terms of x. Hence find y when x = 2.
If 2 log x + 1 = log 360, find: x
If a = `"log" 3/5, "b" = "log" 5/4 and "c" = 2 "log" sqrt(3/4`, prove that 5a+b-c = 1
Express the following in a form free from logarithm:
5 log m - 1 = 3 log n
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1