Advertisements
Advertisements
प्रश्न
Solve for x: `("log"125)/("log"5)` = logx
उत्तर
`("log"125)/("log"5)` = logx
⇒ `("log"5^3)/("log"5)` = logx
⇒ `(3"log"5)/("log"5)` = logx
⇒ 3 = logx
⇒ 3log10 = log x ...(since log 10 = 1)
⇒ log 103 = logx
∴ x = 103
= 1000.
APPEARS IN
संबंधित प्रश्न
If `3/2 log a + 2/3` log b - 1 = 0, find the value of a9.b4 .
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
Solve for x, `log_x^(15√5) = 2 - log_x^(3√5)`.
Solve the following:
log (x + 1) + log (x - 1) = log 48
Solve for x: `("log"81)/("log"9)` = x
State, true of false:
If `("log"49)/("log"7)` = log y, then y = 100.
If log x = a and log y = b, write down
10a-1 in terms of x
If log x = a and log y = b, write down
102b in terms of y
If log (a + 1) = log (4a - 3) - log 3; find a.
Prove that log 10 125 = 3 (1 - log 10 2)