Advertisements
Advertisements
प्रश्न
If log2(x + y) = log3(x - y) = `log 25/log 0.2`, find the values of x and y.
उत्तर
log2(x + y) = `log 25/log 0.2`
⇒ log2(x + y) = log0.2 25
⇒ log2(x + y) = `log_(2/10) 25`
⇒ `log_2( x + y ) = log_5^-1 5^2`
⇒ `log_2( x + y ) = -2log_5 5`
⇒ `log_2( x + y ) = -2`
⇒ x + y = 2-2 ...[Removing logarithm]
⇒ x + y = `1/2^2`
⇒ x + y = `1/4` ...(1)
⇒ `log_3( x - y ) = log25/log 0.2`
⇒ `log_3( x - y ) = log5^2/log5^1`
⇒ `log_3(x - y) = (2log5)/(-1log5)`
⇒ `log_3( x - y ) = -2`
3-2 = x - y
`1/3^2=x-y`
`1/3=x-y`
x - y = `1/9` ...(2)
Adding equation (1) and (2)
x + y = `1/4`
x - y = `1/9`
2x = `1/4+1/9`
2x = `(9+4)/36`
2x = `13/36`
x = `13/72`
From equation (1)
`13/72+y=1/4`
y = `1/4-13/72`
y = `(18-13)/72`
y = `5/72`
APPEARS IN
संबंधित प्रश्न
If log√27x = 2 `(2)/(3)` , find x.
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
Given log10x = 2a and log10y = `b/2`. Write 10a in terms of x.
Given log10x = 2a and log10y = `b/2. "If" log_10^p = 3a - 2b`, express P in terms of x and y.
If a2 = log x , b3 = log y and `a^2/2 - b^3/3` = log c , find c in terms of x and y.
Solve for x: `("log"125)/("log"5)` = logx
Solve for x: `("log"289)/("log"17)` = logx
If log 3 m = x and log 3 n = y, write down
32x-3 in terms of m
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1
Prove that log (1 + 2 + 3) = log 1 + log 2 + log 3. Is it true for any three numbers x, y, z?