Advertisements
Advertisements
Question
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.
Solution
x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108
⇒ x = log 108 - log 4 - 2 log 5 - 3 log 3 - 2 log 2
= log (22 . 33) - log 22 - log 52 - log 33 - log 22
= `"log"((2^2. 3^3)/(2^2 . 5^2 . 3^3. 2^2))`
= `"log"(1/100)`
⇒ x
= log 1 - log 100
= 0 - 2
= -2
∴ x = -2.
APPEARS IN
RELATED QUESTIONS
If a2 + b2 = 23ab, show that:
log `(a + b)/5 = 1/2`(log a + log b).
Show that : loga m ÷ logab m + 1 + log ab
If p = log 20 and q = log 25 , find the value of x , if 2log( x + 1 ) = 2p - q.
State, true of false:
logba =-logab
If log x = a and log y = b, write down
102b in terms of y
If log 3 m = x and log 3 n = y, write down
32x-3 in terms of m
If 2 log x + 1 = log 360, find: log(2 x -2)
Express the following in a form free from logarithm:
3 log x - 2 log y = 2
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1
Prove that (log a)2 - (log b)2 = `"log"("a"/"b")."log"("ab")`