Advertisements
Advertisements
Question
If a = log 20 b = log 25 and 2 log (p - 4) = 2a - b, find the value of 'p'.
Solution
a = log 20, b = log 25 and 2 log (p - 4) = 2a - b
⇒ 2 log (p - 4) = 2a - b
⇒ 2 log (p - 4) = 2log20 - log25
⇒ log (p - 4)2 = log202 - log25
⇒ log (p - 4)2 = `"log"(400/25)`
⇒ (p - 4)2 = `(400)/(25)`
⇒ p2 - 8p + 16 = 16
⇒ p2 - 8p = 0
⇒ p(p - 8) = 0
⇒ p = 0 or p = 8.
APPEARS IN
RELATED QUESTIONS
Evaluate :`1/( log_a bc + 1) + 1/(log_b ca + 1) + 1/ ( log_c ab + 1 )`
Given : `log x/ log y = 3/2` and log (xy) = 5; find the value of x and y.
Evaluate: logb a × logc b × loga c.
Solve for x: `("log"27)/("log"243)` = x
Solve for x: `("log"81)/("log"9)` = x
Solve for x: `("log"128)/("log"32)` = x
Solve for x: `("log"1331)/("log"11)` = logx
Solve for x: `("log"289)/("log"17)` = logx
Express log103 + 1 in terms of log10x.
Express the following in a form free from logarithm:
`2"log" x + 1/2"log" y` = 1