Advertisements
Advertisements
प्रश्न
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x+y- z
(ii) 5x + y - z
उत्तर
Given that
x = log 0.6 , y = log 1.25, z = log 3 - 2log 2
Consider
z = log 3 - 2log 2
= log 3 - log 22
= log 3 - log 4
= log`3/4`
= log 0.75 ....(1)
(i) x + y - z = log 0.6 + log 1.25 - log 0.75
= log`[ 0.6 xx 1.25 ]/0.75`
= log`[0.75/0.75]`
= log 1
= 0 ...(2)
(ii) 5x + y - z = 50 ...[ ∵ x + y - z = 0 from (2) ]
= 1
APPEARS IN
संबंधित प्रश्न
Show that : loga m ÷ logab m + 1 + log ab
Given log10x = 2a and log10y = `b/2`. Write 10a in terms of x.
Solve the following:
`log_2x + log_4x + log_16x = (21)/(4)`
Solve for x: log (x + 5) = 1
Solve for x: `("log"121)/("log"11)` = logx
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
If a = `"log" 3/5, "b" = "log" 5/4 and "c" = 2 "log" sqrt(3/4`, prove that 5a+b-c = 1
Express the following in a form free from logarithm:
m log x - n log y = 2 log 5
Prove that `("log"_"p" x)/("log"_"pq" x)` = 1 + logp q
If `"a" = "log""p"^2/"qr", "b" = "log""q"^2/"rp", "c" = "log""r"^2/"pq"`, find the value of a + b + c.