Advertisements
Advertisements
प्रश्न
Evaluate :`1/( log_a bc + 1) + 1/(log_b ca + 1) + 1/ ( log_c ab + 1 )`
उत्तर
⇒ `1/( log_a bc + 1) + 1/(log_b ca + 1) + 1/ ( log_c ab + 1 )`
⇒`1/( log_a bc + log_a a) + 1/(log_b ca +log_b b) + 1/ ( log_c ab + log_c c )`
⇒ `1/( log_a abc ) + 1/(log_b abc) + 1/ ( log_c abc )` ...[∵ loga b + loga c = loga bc ]
⇒ `(1) /[( log abc ) / ( loga )]` + `(1) /[( log abc ) / ( logb )]` + `(1) /[( log abc ) / ( logc )]`
⇒ ` ( log a + log b + log c) / ( log abc) `
⇒ `( log abc) / ( log abc) ` ...∵[ loga b + loga c = loga bc ]
⇒ 1
APPEARS IN
संबंधित प्रश्न
Solve the following:
log (3 - x) - log (x - 3) = 1
Solve the following:
log(x2 + 36) - 2log x = 1
Solve the following:
log 8 (x2 - 1) - log 8 (3x + 9) = 0
Solve the following:
log (x + 1) + log (x - 1) = log 48
Solve for x: `("log"27)/("log"243)` = x
If log x = a and log y = b, write down
102b in terms of y
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
If 2 log x + 1 = log 360, find: x
Express the following in a form free from logarithm:
2 log x + 3 log y = log a
Prove that log (1 + 2 + 3) = log 1 + log 2 + log 3. Is it true for any three numbers x, y, z?