Advertisements
Advertisements
Question
Prove that log (1 + 2 + 3) = log 1 + log 2 + log 3. Is it true for any three numbers x, y, z?
Solution
log (1 + 2 + 3) = log 6
= log (1 + 2 + 3) = log 1 + log 2 + log 3
No, this property is not true for any numbers x, y, z
For example, log (1 + 3 + 5) = log 9
log 1 + log 3 + log 5 = log (1 x 3 x 5) = log 15
log (1 + 3 + 5) ≠ log 1 + log 3 + log 5.
APPEARS IN
RELATED QUESTIONS
If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z .
If a2 + b2 = 23ab, show that:
log `(a + b)/5 = 1/2`(log a + log b).
Solve for x and y ; if x > 0 and y > 0 ; log xy = log `x/y` + 2 log 2 = 2.
Evaluate : log38 ÷ log916
Solve the following:
`log_2x + log_4x + log_16x = (21)/(4)`
Express log103 + 1 in terms of log10x.
Find x and y, if `("log"x)/("log"5) = ("log"36)/("log"6) = ("log"64)/("log"y)`
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.
Prove that: `(1)/("log"_2 30) + (1)/("log"_3 30) + (1)/("log"_5 30)` = 1