Advertisements
Advertisements
प्रश्न
Express the following in a form free from logarithm:
5 log m - 1 = 3 log n
उत्तर
5 log m - 1 = 3 log n
⇒ log m5 - log 10 = log n3
⇒ `"log"(("m"^5)/10)` = log n3
⇒ `(("m"^5)/10)` = n3
⇒ m5 = 10 n3.
APPEARS IN
संबंधित प्रश्न
Solve for x and y ; if x > 0 and y > 0 ; log xy = log `x/y` + 2 log 2 = 2.
Given log10x = 2a and log10y = `b/2`. Write 10a in terms of x.
Given log10x = 2a and log10y = `b/2. "If" log_10^p = 3a - 2b`, express P in terms of x and y.
Solve the following:
log(x2 + 36) - 2log x = 1
Solve for x: `("log"121)/("log"11)` = logx
If log 3 m = x and log 3 n = y, write down
`3^(1-2y+3x)` in terms of m an n
If `"log" x^2 - "log"sqrt(y)` = 1, express y in terms of x. Hence find y when x = 2.
If x + log 4 + 2 log 5 + 3 log 3 + 2 log 2 = log 108, find the value of x.
Express the following in a form free from logarithm:
3 log x - 2 log y = 2
Prove that `("log"_"p" x)/("log"_"pq" x)` = 1 + logp q