Advertisements
Advertisements
प्रश्न
If x2 + y2 = 7xy, prove that `"log"((x - y)/3) = (1)/(2)` (log x + log y)
उत्तर
x2 + y2 = 7xy
⇒ x2 + y2 - 2xy = 7xy - 2xy
⇒ (x + y)2 = 9xy
⇒ `((x + y)/3)^2` = xy
⇒ `((x + y)/3) = sqrt(xy)`
Considering log both sides, we get
`"log"((x + y)/3) = "log"(xy)^(1/2)`
⇒ `"log"((x + y)/3) = (1)/(2)"log"(xy)`
⇒ `"log"((x + y)/3) = (1)/(2)["log" x + "log" y]`.
APPEARS IN
संबंधित प्रश्न
If log 2 = 0.3010 and log 3 = 0.4771 ; find the value of : log 12
If log 27 = 1.431, find the value of : log 300
Given `log_x 25 - log_x 5 = 2 - log_x (1/125)` ; find x.
Express the following as a single logarithm:
`2"log"(9)/(5) - 3"log"(3)/(5) + "log"(16)/(20)`
Simplify the following:
`3"log" (32)/(27) + 5 "log"(125)/(24) - 3"log" (625)/(243) + "log" (2)/(75)`
If 2 log x + 1 = 40, find: x
If log1025 = x and log1027 = y; evaluate without using logarithmic tables, in terms of x and y: log105
If 2 log y - log x - 3 = 0, express x in terms of y.
If log 8 = 0.90, find the value of each of the following: `"log"sqrt(32)`
If log 27 = 1.431, find the value of the following: log 9