Advertisements
Advertisements
प्रश्न
If log 27 = 1.431, find the value of : log 300
उत्तर
log 27 = 1.431
⇒ log 3 x 3 x 3 = 1.431
⇒ log 33 = 1.431
⇒ 3log3 = 1.431
⇒ log 3 = `1.431/3`
⇒ log 3 = 0.477 ...(1)
log 300
= log( 3 x 100 )
= log 3 + log 100
= log 3 + 2 ...[ ∵ log10100 = 2 ]
= 0.477 + 2
= 2.477
APPEARS IN
संबंधित प्रश्न
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b': log 2.25
Prove that:
log10 125 = 3(1 - log102).
Express the following in terms of log 2 and log 3: log 648
Express the following in terms of log 2 and log 3: `"log" root(4)(648)`
Express the following as a single logarithm:
`2"log"(9)/(5) - 3"log"(3)/(5) + "log"(16)/(20)`
Express the following as a single logarithm:
`3"log"(5)/(8) + 2"log"(8)/(15) - (1)/(2)"log"(25)/(81) + 3`
Simplify the following:
`3"log" (32)/(27) + 5 "log"(125)/(24) - 3"log" (625)/(243) + "log" (2)/(75)`
If log1025 = x and log1027 = y; evaluate without using logarithmic tables, in terms of x and y: log105
If x2 + y2 = 7xy, prove that `"log"((x - y)/3) = (1)/(2)` (log x + log y)
Simplify: log a2 + log a-1