Advertisements
Advertisements
Question
If log 27 = 1.431, find the value of : log 300
Solution
log 27 = 1.431
⇒ log 3 x 3 x 3 = 1.431
⇒ log 33 = 1.431
⇒ 3log3 = 1.431
⇒ log 3 = `1.431/3`
⇒ log 3 = 0.477 ...(1)
log 300
= log( 3 x 100 )
= log 3 + log 100
= log 3 + 2 ...[ ∵ log10100 = 2 ]
= 0.477 + 2
= 2.477
APPEARS IN
RELATED QUESTIONS
Given 3log x + `1/2`log y = 2, express y in term of x.
Given 2 log10 x + 1 = log10 250, find :
(i) x
(ii) log10 2x
Given: log3 m = x and log3 n = y.
Write down `3^(1 - 2y + 3x)` in terms of m and n.
Prove that:
log10 125 = 3(1 - log102).
Express the following in terms of log 2 and log 3: log128
Write the logarithmic equation for:
F = `"G"("m"_1"m"_2)/"d"^2`
Write the logarithmic equation for:
n = `sqrt(("M"."g")/("m".l)`
Express the following as a single logarithm:
`2"log"(9)/(5) - 3"log"(3)/(5) + "log"(16)/(20)`
Express the following as a single logarithm:
`2"log"(15)/(18) - "log"(25)/(162) + "log"(4)/(9)`
If 2 log x + 1 = 40, find: x