Advertisements
Advertisements
Question
If x2 + y2 = 7xy, prove that `"log"((x - y)/3) = (1)/(2)` (log x + log y)
Solution
x2 + y2 = 7xy
⇒ x2 + y2 - 2xy = 7xy - 2xy
⇒ (x + y)2 = 9xy
⇒ `((x + y)/3)^2` = xy
⇒ `((x + y)/3) = sqrt(xy)`
Considering log both sides, we get
`"log"((x + y)/3) = "log"(xy)^(1/2)`
⇒ `"log"((x + y)/3) = (1)/(2)"log"(xy)`
⇒ `"log"((x + y)/3) = (1)/(2)["log" x + "log" y]`.
APPEARS IN
RELATED QUESTIONS
Given: log3 m = x and log3 n = y.
If 2 log3 A = 5x - 3y; find A in terms of m and n.
Express the following in terms of log 5 and/or log 2: log250
Write the logarithmic equation for:
n = `sqrt(("M"."g")/("m".l)`
Express the following as a single logarithm:
`3"log"(5)/(8) + 2"log"(8)/(15) - (1)/(2)"log"(25)/(81) + 3`
Simplify the following:
`2 "log" 5 +"log" 8 - (1)/(2) "log" 4`
If log x = p + q and log y = p - q, find the value of log `(10x)/y^2` in terms of p and q.
If log1025 = x and log1027 = y; evaluate without using logarithmic tables, in terms of x and y: log103
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log540
If log 2 = x and log 3 = y, find the value of each of the following on terms of x and y: log1.2
Find the value of:
`("log"sqrt125 - "log"sqrt(27) - "log"sqrt(8))/("log"6 - "log"5)`