Advertisements
Advertisements
Question
If log x = p + q and log y = p - q, find the value of log `(10x)/y^2` in terms of p and q.
Solution
log x = p + q and log y = p - q
`"log"(10x)/y^2` = log 10x - log y2
⇒ `"log"(10x)/y^2` = log10 + logx - 2logy
⇒ `"log"(10x)/y^2` = 1 + p + q - 2(p - q)
⇒ `"log"(10x)/y^2` = 1 - p + 3q.
APPEARS IN
RELATED QUESTIONS
If log10 8 = 0.90; find the value of : log√32
If log10 a = b, find 103b - 2 in terms of a.
Given: log3 m = x and log3 n = y.
If 2 log3 A = 5x - 3y; find A in terms of m and n.
Given `log_x 25 - log_x 5 = 2 - log_x (1/125)` ; find x.
Express the following in terms of log 2 and log 3: log 36
Express the following in terms of log 2 and log 3: `"log"root(5)(216)`
Express the following in terms of log 2 and log 3: `"log"(26)/(51) - "log"(91)/(119)`
Simplify the following:
`2 "log" 5 +"log" 8 - (1)/(2) "log" 4`
If log 27 = 1.431, find the value of the following: log300
Simplify: log b ÷ log b2