Advertisements
Advertisements
प्रश्न
Simplify the following:
`12"log" (3)/(2) + 7 "log" (125)/(27) - 5 "log" (25)/(36) - 7 "log" 25 + "log" (16)/(3)`
उत्तर
`12"log" (3)/(2) + 7 "log" (125)/(27) - 5 "log" (25)/(36) - 7 "log" 25 + "log" (16)/(3)`
= `12 "log" (3)/(2) + 7"log" (5^3)/(3^3) - 5 "log" (5^2)/(2^2 xx 3^2) - 7"log" 5^2 + "log" (2^4)/(3)`
= 12 log 3 − 12 log 2 + 7 log 53 − 7 log 33 − 5 log 52 + 5 log 22 + 5 log 32 − 7 log 52 + log 24 − log 3
= 12 log 3 − 12 log 2 + 21 log 5 − 21 log 3 − 10 log 5 + 10 log 2 + 10 log 3 − 14 log 5 + 4 log 2 − log 3
= 2 log 2 + 3 log 5
APPEARS IN
संबंधित प्रश्न
If x = (100)a , y = (10000)b and z = (10)c , find log`(10sqrty)/( x^2z^3)` in terms of a, b and c.
Prove that : If a log b + b log a - 1 = 0, then ba. ab = 10
Given: log3 m = x and log3 n = y.
Express 32x - 3 in terms of m.
Express the following in terms of log 5 and/or log 2: log20
Express the following in terms of log 5 and/or log 2: log500
Express the following in terms of log 2 and log 3: `"log" root(3)(144)`
Write the logarithmic equation for:
n = `sqrt(("M"."g")/("m".l)`
Express the following as a single logarithm:
log 18 + log 25 - log 30
Express the following as a single logarithm:
`2"log" (16)/(25) - 3 "log" (8)/(5) + "log" 90`
Find the value of:
`("log"sqrt(8))/(8)`