Advertisements
Advertisements
प्रश्न
Find the value of:
`("log"sqrt(8))/(8)`
उत्तर
`("log"sqrt(8))/(8)`
= `("log"2sqrt(2))/(8)`
= `(1)/(8)("log"2 + "log"sqrt(2))`
= `(1)/(8)("log"2 + "log"2^(1/2))`
= `(1)/(8)"log"2 + (1)/(8)"log"2^(1/2)`
= `(1)/(8)"log"2 + (1)/(2)(1)/(8)"log"2`
= `(1)/(8)"log"2 + (1)/(16)"log"2`
= `(2)/(16)"log"2 + (1)/(16)"log"2`
= `(3)/(16)"log"2`.
APPEARS IN
संबंधित प्रश्न
If 3( log 5 - log 3 ) - ( log 5 - 2 log 6 ) = 2 - log x, find x.
Given 2 log10 x + 1 = log10 250, find :
(i) x
(ii) log10 2x
If log10 8 = 0.90; find the value of : log 0.125
If log10 8 = 0.90; find the value of : log√32
Simplify : log (a)3 - log a
Express the following as a single logarithm:
`"log"(81)/(8) - 2"log"(3)/(5) + 3"log"(2)/(5) + "log"(25)/(9)`
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: log 12
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log540
If x2 + y2 = 6xy, prove that `"log"((x - y)/2) = (1)/(2)` (log x + log y)
Simplify: log b ÷ log b2